Code: 50H15 MR 15

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Maisammaguda, Dhulapally, (Post via Kompally), Secunderabad-500 100.

IV B.TECH II SEMESTER

SUBJECT: ENTREPRENEURSHIP SKILLS

(BRANCH: Common to CSE, ECE, EEE, ME, CE, Mining)

Name of the faculty: P.RAJITHA,B.KIRAN KUMAR REDDY,ABHINAV SWAROOP,DR.G.PRAVEEN KUMAR(MBA DEPARTMENT)

MOD	ULE-I		
Q.No	Question	Bloom's Taxonomy Level	СО
1.	Define entrepreneurship? What are the new trends you have noticed in entrepreneurship during 21 st century?	Remembering	1
	OR		
2.	Entrepreneurs can fail even if they are committed and have the characteristics needed to be successful. Why do you think this can happen?	Understanding	1
3.	Explain the evolution of entrepreneurship with suitable examples	Understanding	1
	OR	I	
4.	How can an organizational development be aided by having a good entrepreneurial mind set?	Remembering	1
5	Do you feel the service sector creates more job opportunities than the manufacturing sector — if yes, give reasons?	Creating	1
	OR		
6	List out the various barriers to entrepreneurship. Write some overcoming measures for such barriers.	Remembering	1
7	Discuss the various steps for setting up an enterprise.	Understanding	1
	OR	<u>l</u>	<u>I</u>
8	Distinguish between entrepreneur and entrepreneurship?	Understanding	1

MOD	OULE-II		
1.	What are the problems faced by Indian Women Entrepreneurs and what government support can they avail of?	Remembering	2
	OR		
2.	As a potential entrepreneur, how would you construct a business plan to satisfy your banker?	Remembering	2
3.	Why do entrepreneurs need a strategy for success? Discuss an integrated corporate entrepreneurial strategy?	Remembering	2
	OR		
4.	"Entrepreneurs are made not born". Comment and give reason for your views.	Understanding	2

Signature of Faculty

Signature of HOD

Code: 50H15 MR-15-16

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) <u>IV B.Tech II Semester I Mid Question Bank 2018-19</u>

Subject: Entrepreneurship Skills

Common: CSE,CE,ECE,EEE,Mech,Mining

Name of the faculty: P.RAJITHA, B.KIRAN KUMAR REDDY, ABHINAV

SWAROOP, DR.G. PRAVEEN KUMAR (MBA DEPARTMENT)

_				
1.	SBIR stands for			[]
	a) Small business intelligent res		b) Small business inventory re	esearch
	c) Small business innovation re-		d) Small business inventory re	esearch
2.	Which statement is not true of e	entrepreneurs?		[]
	a)They take risks			
	b) They apply innovative id	leas.		
	c) They change the way bus	inesses convert i	nputs into outputs	
	d) They generally stick to th	e processes alrea	dy in use	
3.	The idea and actions that explain	how a firm will i	make its profits refers to	[]
	a)Mission b)Goal	c)Objective	d)Strategy	
4.	Entrepreneurial success has been	significant becau	ise of the culture and political and	d economic system
	in			[]
_		sian countries	c)Middle east d)Transition e	
5.	A set of reasons for engaging in			
6	a)Values b)Vision Which of the following is not the	c)Mi	,	
6.	a)Self esteem b)Optimism		d)Caution	o have? []
7	Locus of control is	CIDIIVC	d)Caution	
,.	a)A feeling b)Attitude	c)Att	ribute d)None of the above	
8.	Personal characteristic to be succe			[]
	a) Understanding environment	1		
	b) Creating management options	S		
	c) Encourage open discussion			
	d) All the above			
9. I	Money or property owned are used		1) 177	[]
10	a)Capitalism b)Capital	c)Mentor	d)Wage	
	Which of the following is present omes an owner-manager?	ned as evidence o	i social factors influencing wheth	er someone
DEC		mmon among sin	gle people than among the marrie	ed I
			s in families, there is little eviden	
	view			or to support time
	c) There seems to be little relat	ionship between s	self-employment and age.	
	d) Self-employment is more co	_		
11	. Full form of MUDRA			[]
	a) Macro units Development ar			
	b) Micro units Development an	•	•	
	c) Micro units Development an	d refinance Agen	cy	
10	d) None of the above			r 3
12	. International entrepreneurship is		d) None of the share	l J
	a)Licensing b)Exporting	c)a&b	d)None of the above	

13 is what the "W" in the SWOT analysis stands for a) Wedge b) Work c) Worth of business d) Weakness	[]
14. An entrepreneur's primary motivation for starting business is	[]
a)To make money b)To be independent c)To be famous d)To be powerful 15. To be successful in an entrepreneurial venture you need	[]
a) Money b)Luck c)Hard work d)Good idea		_
16. Entrepreneurs are best as a) Managers b)Venture capitalists c)Planners d)Doers	[]
17. Entrepreneurs are	ſ	1
a) High risk takers b)Moderate risk takers c)Small risk takers d)Doesn't	matte	er
18. Entrepreneurs typically from		
a) Service businessb) Manufacturing companies		
c) Constructive companies		
d) A variety of ventures		
19. Female entrepreneurs normally start their venture at the age ofyears[]	
a)35-45 b)25-30 c)20-25 d)40-45 20. Male entrepreneurs normally start their venture at the age ofyears	r	1
a)35-45 b)25-35 c)20-25 d)40-45	[]
21. Inthe death of entrepreneur results in the termination of venture	ſ]
a)Limited company b)Proprietorship c)Limited partnership d)Corpora	tion	•
22. The term entrepreneur came from	[]
a)French b)Latin c)English d)UK	_	
23. For the success of business plan the goals should be a)Limitless b)Imaginary c)Specific d)Generalized	[]	J
24. An actor and a person who managed large project were termed as the entrepreneur in the	e [1
a)Earliest period b)Middle ages c)17 th century d)19 th century	~L	,
25. Which of the following is the most important for the entrepreneur, while starting	a nev	V
venture, to make an assessment of?		
a)Risk b)Profit c)Market d)competitors		
26. Which one of the following is NOT an internal factor?	L .]
a) New technology b) Marketing c) Manufacturing d)Personnel		
27. The Entrepreneur's depends upon his/her perception of opportunity []
a) Commitment of opportunity b) Commitment of resources		
c) Control of recourses d) Strategic orientation		
28 refers to what a person heard/apprehended when he/she was you	ng []
a) Verbal programming b) Modelling c) Disassociation d) None of the ab	ove	
29. People who own, operate, and take risk of a business venture [-]
a) Aptitude b) Employee c) Entrepreneurs d) Entrepreneurship		
30. Which one is NOT a disadvantage of Entrepreneurship?]
a) Risky b) Uncertain Income c) You are the boss d) Work long ho	urs	
31. The Entrepreneur was distinguished from capital provider in []
a) Middle ages b) Early ages c) 18th century d) 20th century		

<u> </u>	ge projects was ki Early ages	nown as Entrepr c) 18th centur		[d) 20th]
33. Which of the following is alto		=	ng?]]
a) Entrepreneurship	b) Intraprene	-	• ,•		
c) Act of stating a new venture		ew products by		ipany	1
34. The activity which occurs wh]
	Business skills				
35. Which one of the following is	s NOT one of the	schools of thoug	ght under Macro	o view o	of
entrepreneurship?				[]
	al c) Displacem		d) None of the	above	
36. An entrepreneur doing busine		onal border is ca	ılled:	[]
a) International entrepreneurshi	p	b) Intrapreneu	rship		
c) Domestic entrepreneurship		d) Nor	e of the above		
37. A firm with five or fewer em	ployees, initial ca	pitalization requ	irements of und	ler \$50,	000,
and the regular operational involved	vement of the own	ner		[]
a) Mentor b) Franchise c) S	Service d) Mi	croenterprise			
38. Business activities that avoid	harm to the envir	onment or help	to protect it in s	ome wa	ay is []
a) Free enterprise system b)		-	-		
c) Green Entrepreneurship d)	Social Entreprene	urship			
39. A is a for-profit en	-	-	hieving profitab	oility an	d
attaining social returns	1	S	0.1	[]
-	Entrepreneurship				•
	Social Entreprene	urship			
40. Evaluation of your strengths	•	r		[]
a) Self Assessment b) Employ		eurshin d) Ent	repreneur	L	_
41. Which one is NOT a disadvar	•	-	epronedi	ſ]
	in Income c) Yo	-	d) Work long l	L hours	J
42. What type of entrepreneurial			· ·		1
a) Manufacturing b) Wholes	•	c) Retailing	d) Service	• L	J
43. What type of entrepreneurial	· ·	, ,		n uga or	
consume them?	business sens pro	ducts directly to	the people who	r use or	_
	al:a	a) Datailina	d) Comico	L]
a) Manufacturing b) Wholes	=	c) Retailing	d) Service	r	1
44. Which one is NOT an advant	-	-]
a) Can choose a business of int		ou can be creativ			
c) Make a lot of money	*	nake decisions a	lone	_	_
45. The ability to learn a particul	· ·]
a) Aptitude b) Employee	•	eurship d) Ent	repreneur		
46. Entrepreneurs who start a ser	-			[]
a) Macropreneurs b) Intrapre	neurs c) Mu	ıltipreneurs	d) None of the	above	

47. The opposite of "opportunity thir	nking" is:	[]
a) Obstacle thinking	b) Thought self-leadership.		
c) Self-efficiency	d) Adaptive response behavior.		
48. The startups which rarely go pub	lic are called:	[]
a) Life style b) Foundation compar	ny c) Small company d) High potentia	al venture	
49. Venture capital firms are usually	organized as	[]
a) Closed-end mutual funds	b) Limited partnerships		
c) Corporations	d) nonprofit businesses		
50. The entrepreneur who is committed	ted to the entrepreneurial effort because	e it makes go	ood
business sense is classed as a/an		[]
a) Inventor b) Craftsman	c) Hacker d) Opportunist		
51 Today, inspired by the growth of	companies such as Amazon.com, entre	epreneurs are	e flocking
to the to start new businesses	,		[]
	,	d) None of t	
	uals that invests money in new or exp	anding busing	nesses for
ownership and potential profits is known as Amaguity financing firm. It From		4) 1	[]
a) An equity financing firmb) Francisco53 .For Internet start-ups, one typical	2 /	d) A corpora	uon []
a) Angel financing b) Governmen	_	d) Co	ommunity
development financing		,	, <i>,</i>
54. Felix is an entrepreneur. At this st	age of his company, his main concerns a	are do we hav	ve enough
•	stage of growth is Felix's company in?		
a) Survival b) Start-up c) Res	· · · · · · · · · · · · · · · · · · ·	above	
55. The primary concerns when first	b) Planning and human resources	Ĺ	J
a) Marketing and accountingc) Financing and marketing	,		
56. What are the primary sources of the	, , , , , , , , , , , , , , , , , , , ,	Γ	1
a) Personal savings and indiv		L	,
b) Finance companies and ba			
c) Small Business Administra	ation and banks		
d) None of the above		1 40.5	1
-	parrier to new product creation and devolution cost c) Opportunity parameters	-	J
d) Intrapreneurship culture	ortumity cost (a) Opportumity parame	lCI	
· • • • • • • • • • • • • • • • • • • •	be considered while assessing the locat	ion for busin	iess?
	Č	[]
a) Parking	b) Access from roadways to fa	cility	
c) Delivery rates	d) All of the given options		_
_	sound strategic option for an entrepre	neur when s	ynergy is
present? a) Merger b) Joint ventur	re c) Minority interest d) Majo	rity interest]
, ,	r the business is economically feasible	•	1
	c) Economic d) None of the above		ı
	either making profits nor losses is desc		term
		[]

	a) Start-up b) Buck-up c) Cash strap d) Break even		
62.	. An entrepreneur's failure to adhere to sound business practices can be considered	ed as	[]
	a) Behaving unethically b) Ignoring indigenous customs		
	c) Not observing local regulations d) None of the above		
63.	. Every business venture starts with	[]
	a) Capital b) An idea c) A market d) An opportunity		
64.	. Which of the following is NOT a method of generating a venture idea	[]
	a) Training b) Checklist c) Notebook d) Brainstorming		
65.	. Which of the following is NOT a push force of motivation?	[]
	a) Security needs b) Career advancement goals		
	c) Attitude about the supervisor d) Amount and timing of feedback		
66.	. Which of the following is NOT an internal motivating force?	[]
	a) Goals b) Feedback c) Needs d) None of the above		
67.	. Which is one of the most important leadership qualities among managers and em	ıploye	ees in the
	organization? []		
	a) Entrepreneurship b) Motivation c) Communication d) Staffing		
68.	. An individual's search for a new venture creation and the desire to sustain that ve	nture	is called
]	
	a) Entrepreneurial Communication b) Entrepreneurial motivation		
	c) Entrepreneurial skills d) None of the above		
69.	. If expected outcomes are than achieved results, the entrepreneurs are	e mot	
	continue the same behaviour		
70	a) Less b) More c) Constant d) None		
70.	. Most of the successful entrepreneurs say that they are motivated by		[]
	a) Desire for money b) Desire to make their vision come true		
71	c) Both A & B d) None of the above		F 1
/1.	. Who was the first lady governor of an Indian state?		[]
	a) Miss padmaja Naidu b) Mrs. Sarojini Naidu c) Mrs. Syahata Vrinalani d) Mrs. Tarakashyyari Sinha		
72	c) Mrs. Sucheta Kripalani d) Mrs. Tarakeshwari Sinha . Who among the following is the world's first woman cosmonaut?		гı
12.	a) Bachendri Pal b) Junko Tabeic) Valentine Tereshkova d) Sally Ride		[]
73	. Who among the following was the first woman minister of a state		гі
13.	a) Vijayalakshmi Pandit b) Sarojini Naidu		
	c) Rajkumari Amrit Kaur d) Indira Gandhi		
74	. MSMED stands to	Г]
, 1.	a) Micro, Small & Medium Enterprises Development	L	J
	b) Mini, Small & Medium Enterprises Development		
	c) Micro, Small & Medium Entrepreneurship Development		
	d) Micro, Small & Medium Enterprises Department		
75.	implies that women entrepreneurs are now economically independent	ndent	and take
•	decisions independently.	[]
	a)Better utilization of resources b)Improved quality life	L	
	c) Economic development d)Employment generation		

Signature of the faculty

Signature of the HOD

B.Tech-ECE- VIII Sem (MR 15-2016-17 Admitted Students) I Mid Examination Subjective Question Bank

Subject: Embedded Systems Design Branch: EEE

Subject Code: 50499

Name of the faculty: Mr N Srikanth Prasad

Instructions:

1. All the questions carry equal marks

2. Solve all the questions

MODULE I

Q.No	Question	Bloom's Taxonomy Level	со
1.	What is an embedded system? Explain the different applications of embedded systems	Understanding	1
	OR		
2.	Explain the various purposes of embedded systems in detail with illustrative examples.	Understanding	1
3.	Explain the different classifications of embedded systems. Give	Understanding	1
	an example for each		
	OR		
4.	Differentiate between general purpose computers & embedded systems	Understanding	1
5.	Explain the role of embedded systems in automotive domain.	Evaluating	1
	OR		I
6.	Explain major levels of abstraction in the design process with example.	Evaluating	1
7.	List the quality attribute in the embedded system development context? Expalin different quality attributes to be considered in embedded system design.	Analyzing	1

	OR		
8.	Explain the different characteristics of embedded systems in detail.	Analyzing	1

MODULE II

Q.No.	Question	Bloom's Taxonomy Level	СО
1.	What is the difference between microprocessor and microcontroller? Explain the role of microprocessors and controllers in embedded system design?	Analyzing	2
	OR		
2.	What is the difference between RISC and CISC processors? Give an example for each	Analyzing	2
3.	Differentiate between Harvard and Von-Neumann architecture.	Analyzing	2
	OR		
4.	What are the different types of memories used in Embedded System Design? Explain the role of each.	Analyzing	2
5.	Explain the different on-board communication interfaces in brief.	Understanding	2
	OR		
6.	Explain the different external communication interfaces in brief.	Understanding	2
7.	Define Sensor and Actuator? Explain its role in Embedded System Design? Illustrate with examples	Understanding	2
	OR		
8.	Differentiate between SRAM and DRAM cell.	Understanding	2

MODULE III

Q.No.	Question	Bloom's Taxonomy Level	CO
1.	What is Embedded Firmware? What are the different	Understanding	3
	approaches available for Embedded Firmware development?		

	OR				
2.	Explain the role of Reset circuit and Brown-out Protection Circuit in Embedded System.	Understanding	3		
3.	Explain the role of Real Time Clock (RTC) in Embedded System.	Applying	3		
	OR				
4.	Explain the role of Watchdog Timer in Embedded System.	Applying	3		

Signature of the Faculty

Signature of HOD

B.Tech-ECE- VIII Sem (MR 15-2016-17 Admitted Students) I Mid Examination Objective Question Bank

Subjec	et: Embedded Systems et Code: 50499 of the faculty: Mr N				Branch: EEE
1.	Embedded systems are a) General purpose	b) Special purp	oose	[c) all] d) None
2.	Embedded systems is a) An electronic system c) An electro-mechanica		•]]
3.	Which of the following a) Built around specializ c) Execution behavior m	zed hardware	ded systems? b) Always conta d) All of these] ing system None of these
4.	Which of the following a) Electronic Barbie dol c) Cell phone	l b) Sim	Small-Scale Emb ple calculator etronic toy car	edded Syste	m'?[]
5.	The first recognised mode a) Apple Computer c) Calculator	b) Apo	s ollo Guidance Cor io Navigation Sys	•] C)
6.	The first mass produced a) Minuteman-I c) Autonetics D-17	b) Minuteman-II	lance Computer ([AGC)]
7.	Which of the following a) Data Collection d) All of these	is (are) an intended purp b) Data processing e) None of these		ded system? communicat	tion
8.	Which of the following a) USB Mass storage de d) Music player e) All o	is an (are) example(s) o vice b) Net	f embedded syste work router e of these] Digital camera
9.	A digital multi meter is a) Data communication				
10.	Which of the following a) Apple iPOD (media p c) Both (a) and (b)	is an (are) example(s) o	f an embedded sy b) SanDisk USF d) None of these	3 mass stora	_
11.	Embedded systems are a a) True b) False		· · · · · · · · · · · · · · · · · · ·		[]
12.	Which of the following a) Reactive and Real Tin d) All of these	is true about Embedded	•	[] ates in harsh	environment
13.	Which of the following a) Cell phone d) All of these			[] em	

1.4	
14.	Quality attributes of an embedded system are []
	a) Functional requirements b) Non-functional requirements
	c) Both d) None of these
15.	Response is a measure of []
	a) Quickness of the system b) How fast the system tracks changes in Input
	c) Both d) None of these
16.	Throughput of an embedded system is a measure of []
	a) The efficiency of the system b) The output over a stated period of time
	c) Both d) None of these
17.	Benchmark is []
	a) A reference point b) A Set of performance criteria c) Both d) None
18.	Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) defines the reliability
	of an embedded system. State True or False. []
	a) True b) False
19.	MTBF gives the frequency of failures of an embedded system. State True or False[]
	a) True b) False
20.	Which of the following is true about the quality attribute 'maintainability'?
	a) The corrective maintainability requirement for a highly reliable embedded system is very less
	b) Availability of an embedded system is directly related to the maintainability of the system
	c) Both d) None
21.	Mean Time Between Failures (MTBF) for an embedded product is very high. This means:[]
	a) The product is highly reliable b) The availability of the product is very high
	c) The preventive maintenance requirement for the product is very less
	d) All of these e) None of these
22.	Mean Time Between Failures (MTBF) of an embedded product is 4 months and the Mean Time
	To Repair (MTTR) of the product is 2 weeks. What is the availability of the product?[]
•	a) 100% b) 50% c) 89% d) 10%
23.	Which of the following are the three measures of information security in embedded systems?[]
	a) Confidentiality, secrecy, integrity b) Confidentiality, integrity, availability
2.4	c) Confidentiality, transparency, availability d) Integrity, transparency, availability
24.	You are working on a mission critical embedded system development project for a client and the
	client and your company has signed a Non-Disclosure Agreement (NDA) on the disclosure of the
	project-related information. You share the details of the project you are working with your friend.
	Which aspect of Information security you are violating here? a) Integrity b) Confidentiality c) Availability d) None
25	a) Integrity b) Confidentiality c) Availability d) None Which of the following is an example of 'gradual' safety threat from an embedded system?[]
45.	a) Product blast due to overheating of the battery
	b) UV emission from the embedded product c) Both d) None
26	Non-operational quality attributes are []
20.	a) Non-functional requirement b) Functional requirements
	b) Quality attributes for an offline product d) (a) and (c) e) None
27	Which of the following is (are) an operational quality attribute?
	a) Testability b) Safety c) Debug-ability d) Portability e) All
28.	Which of the following is (are) non-operational quality attribute? []
	a) Reliability b) Safety c) Maintainability d) Portability e) All f) None
29.	In the Information security context, Confidentiality deals with the protection of data and
	application from unauthorized disclosure. State True or False
	application from unauthorized disclosure. State True of Laise
	a) True b) False
30.	
30.	a) True b) False

	c) None
31.	For an embedded system, the quality attribute 'Evolvability' refers to []
	a) The upgradability of the product b) The modifiability of the product
	c) Both d) None
32	Portability is a measure of 'system independence'. Sate True or False []
٥2.	a) True b) False
33	For a commercial embedded product the unit cost is high during []
55.	
	a) Product launching b) Product maturity c) Product growth
	d) Product discontinuing
34.	For a commercial embedded product the sales volume is high during []
	a) Product launching b) Product maturity c) Product growth
	d) Product discontinuing
35.	The protocol require for networking two CPU process are [
	a) TCP b) IP c) UDP d) All of the above
36.	Buffer overrun is the condition in [
	a) Producer-consumer b) Deadlock
	a) Producer-consumer b) Deadlock c) Dining philosophers d) Priority inversion
37.	Hold and wait condition is present in [
	Hold and wait condition is present in a) Racing b) Deadlock c) Dining philosophers d) Priority inversion
38	
50.	a) Maximum b) Minimum c) Faual d) None of the above
20	COST is a growing at for selection of DTOS
39.	cost is a requiriment for selection of KTOS []
40	a) Maximum b) Minimum c) Equal d) None of the above COST is arequriment for selection of RTOS [] a) Functional b) Non functional c) Both a & b d) None memory to hold Operating system files []
40.	memory to hold Operating system files a) NVROM b) EEPROM c) PROM d) FLASH
	a) NVROM b) EEPROM c) PROM d) FLASH
41.	OS requiresmemory to hold OS files [] a) Non volatile memory b) Volatile memory c) Both a& b d) None
	a) Non volatile memory b) Volatile memory c) Both a& b d) None
42.	The RTC chip contains a micro chip for holdingrelated information of system in the
	absence of power
	a) Time b) Date c) Both a& b d) none
43.	The unit of these Embedded system responsible for generating precise for the
	processor []
	a) Power b) Reset c) oscillatory d) Brownout protection
44.	Brown out protection circuit prevents the from unexpected program execution[]
	a) output b) Input c) processor/controller d) none
45.	Which one of the following offers CPUs as integrated memory or peripheral interfaces?
	a) Microcontroller b) Microprocessor c) Embedded system d) Memory system
46.	Which of the following offers external chips for memory and peripheral interface circuits?[]
	a) Microcontroller b) Microprocessor c) Embedded system d) Memory system
47.	Which of the following is a 4-bit architecture? []
	a) MC6800 b) 8086 c) 80386 d) National COP series
48	What is CISC?
	a) Computing instruction set complex b) Complex instruction set computing
	c) Complementary instruction set computing d) Complex instruction set complementary
40	How is the protection and security for an embedded system made?
+ フ.	•
50	
50.	
	Which of the following possesses a CISC architecture? []
~ 1	a) MC68020 b) ARC c) Atmel AVR d) Blackfin
51.	a) MC68020 b) ARC c) Atmel AVR d) Blackfin Which of the following is a RISC architecture? []
	a) MC68020 b) ARC c) Atmel AVR d) Blackfin

		e) VMEbus d) DMA bus	
53.	VME bus stands for []			
	, <u>.</u>) Versa module		
		l) Vertical modul		
54.	It retains its content when power is remove		f memory is this	s?[]
	a) Volatile memory b) Nonvolatile m	emory c)RAM	d)SRAN	Л
55.	Name a volatile memory. [
	a) RAM b) EPROM	c) ROM		d) EEPROM
56.	Name a nonvolatile memory. [
	a) ROM b) RAM	c) SRAM	I	d) DRAM
57.	The initial routine is often referred to as [-		
		rap program		
		embedded progr		
58.	What kind of socket does an external EPF			
	a) Piggyback b) Single socket c) Mu		Piggyback rese	t socket
59.	Which one of the following is UV erasable		-	
		*	l) DRAM	
60.	What kind of memory does an OTP have]	
	a) SRAM b) RAM	c) EPRO		d) DRAM
61.	Which type of memory is suitable for low			•
	a) ROM b) Volatile	c) Non-vo		d) RAM
62.	Which is the single device capable of pro	viding prototypin	ig support for a	range of
	microcontroller?	J	\ OFF	1) DAM
<i>c</i> 2	a) ROM b) Umbrella devi			d) RAM
63.	What type of memory is suitable for high			1) EEDDOM
61	a) RAM b) ROM What type of memory is quitable for made	c) EPRO		d) EEPROM
04.	What type of memory is suitable for media) Umbrella devices b) OTP	c) ROM	uction?	d) RAM
65	How an embedded system communicate v	,	vorld? [u) KAWI
05.	a) Peripherals b) Memory	c) Input	d) Outp	J ut
66	How the input terminals are associated wi			ui []
00.	a) Actuators b) Sensors	c) Inputs		d) Outputs
67	Which of the following are external pins			
07.	either be a logic zero or logic one is know		can be control	ied by the processor to
	a) Analogue value b) Displa			
	, 1	l) Time derived of	digital outputs	
68.	What kind of visual panel is used for seve			1
	a) LED b) LCD c) Binary			ogue output
69.	What is 80/20 rule? []		.,	<i>6</i>
	a) 80% instruction is generated and 20% i	nstruction is exe	cuted	
	b) 80% instruction is executed and 20% in			
	c) 80% instruction is executed and 20% in	struction is not e	xecuted	
	d) 80% instruction is generated and 20%	nstructions are n	ot generated	
70.	Which of the architecture is more comple]	
	a) SPARC b) MC68030	c) MC680	030	d) 8086
71.	Which is the first company who defined I	RISC architecture	?[]	
	a) Intel b) IBM c) Motor) MIPS	
72.	Which of the following processors execut	e its instruction i	n a single cycle	2?[]
	a) 8086 b) 8088 c) 8087	d) MIPS	R2000	

73.	How is memory accessed in RISC architecture? []	
	a) load and store instruction b)	opcode instruction	
	c) memory instruction d)	bus instruction	
74.	Which of the following has a Harvard architecture?	? []	
	a) EDSAC b) SSEM c)	PIC d) CSIRAC	
75.	Which of the following statements are true for von	The state of the s	1
,	a) shared bus between the program memory and da		,
	b) separate bus between the program memory and of		
	c) external bus for program memory and data mem	•	
	d) external bus for data memory only		
76	Princeton architecture is also known as [
70.	a) von Neumann architecture b) Harvard	d c) RISCd) CISC	
77	What are the factors of filters which are determined	· · · · · · · · · · · · · · · · · · ·	ioital
, , .	signal processor?	1	151141
		bandwidth d) phase	
78	How many tables does an FIR function of a digital		1
70.	·) 4	J
70	Why is said that branch prediction is not applicable		1
1).	•	low frequency d) high frequency	ncv -
80	Which architecture in digital signal processor reduce		711C y
00.	a) Harvard b) CISC c) program		ann
Q 1	What does AAU stand for?	n storage d) von Neuma	a1111
01.	· ·	arithmetic unit	
		etic access unit	
82	Which is the most basic non-volatile memory? [1	
02.	a) Flash memory b) PROM	c) EPROM d) RO	M
83	Who has invented flash memory?	1 a) KC	J1V1
05.	a) Dr.FujioMasuoka b) John Ellis c)	Josh Fisher d) John Rutte	nhera
8/1	Which of the following is serial access memory?		nocig
04.	a) RAM b) Flash memory	c) Shifters d) RC	M
85	Which is the early form of non-volatile memory?)1VI
05.		gnetic memory	
	a) magnetic core memory b) ferrima c) anti-magnetic memory d) anti-fer	romagnetic	
86	How many main signals are used with memory chi	0	
00.	a) 2 b) 4 c) 6 d)	_	
87	Which are the two main types of processor connect		1
57.	a) sockets and slots b) sockets		1
	c) slots and pins d) pins and ports	and pins	
88	Which of the following has programmable hardwar	re? []	
00.	a) microcontroller b) microprocessor	c) coprocessor d) FP	GA
89	Which of the following is the pin efficient method		
0).		peripheral port d) memory po	
90	Which of the following depends the number of bits]
<i>7</i> 0.	a) wait statement b) ready statement	c) time d) counter	J
91	Which of the following is the most commonly used		1
/1.		LILO	1
92	What does SPI stand for?	,	
<i>, , ,</i>		eripheral interface	
		tial port interface	
93	Which allows the full duplex synchronous commun		slave?
,,,	a) SPI b) serial port c) I2C	d) parallel port	
	a, 2.1 0, solidi port 0, 120	a, paranoi port	

94.	Which of the following process a) 8086 b) 8253		-	[]
95.	a) 8086 b) 8253 In which register does the data i	· ·) MC68HC11 ster device?	[]
	a) index registerb) accumulator	c) SPDR	d) statu	s register	
96.	What happens when 8 bits are to			[]
0.7		b) ready statemen			remains unchanged
97.	Which signal is used to select the			_	
00	a) slave select b) mast				clock signal
98.	How much time period is neces a) 4 clock time period	•		nterrupt and	i transfer the data?
	a) 4 clock time periodc) 16 clock time period	d) 24 clock time 1	ariod		
99	What does I2C stand for?	u) 24 clock time j	1		
)).	a) inter-IC b) intra-IC	c) individ	ual integrated	chin	d) intel IC
100	Which of the following is the m	·	•	[]
100.		c) Paralle		d) SPI	J
101	Which are the two lines used in]	u) 51 1	
101.	a) SDA and SPDR		_		
	c) SDA and SCL	d) SCL and status	line		
102.	Which of the following are the			[]	
102.	a) START, STOP, ACKNOWL			E. END	
	c) START, SCL, SDA	•		-, · · ·	
103.	Which of the following perform			[]	
) memory	. ,	
104.	A packet is also referred to as		, ,		
	a) postcard b) teleg) letter d) data		
105.	Which of the following byte per	forms the slave se	lection?	[]
	a) first byte b) seco	nd byte c) terminal byte	e d)	eighth byte
106.	How can both single byte and the	-		the same bu	ıs? []
	a) extended memory	b) extended addre	ess		
	c) peripheral count	d) slave bus			
107.	Which of the following uses two		[]	
	a) auto-incrementing counter	·	ecrementing co	ounter	
400	c) combined format	d) single			
108.	Which can determine the timeor	_]		
100		rc) combined form		d) watchdo	
109.	Which type of storage element	of SRAM is very to	ast in accessing	g data but c	onsumes lots of
	power?			1) MOD	
110	a) TTL b) CMOS	c) NANE	•	d) NOR	
110.	What is approximate data acces		(0	l J	
111	a) 4ns b) 10ns	*) 60ns	1	
111.	Which of the following is an SF	_	EEDDOM]	EDDOM
112	a) 1T-RAM b) PRC Which one of the following is a		EEPROM	u) r	EPROM
114.	a) capacitor b) indu	_) transistor	9) [resistor
113	Which is the storage element in		f ransistor	1	Tesistoi
113.	a) inductor b) capacitor	c) resistor	L r	d) mosfet	
114.	Which of the following is more	,	•	<i>a,</i> 11100101	
11	a) SRAM b) DRAM	c) ROM		d) RAM	
115.	What is the size of a trench capa	,	Γ]	
- •	a) 1 Mb b) 4-256 Mb	c) 8-128	-	d) 64-128	Mb
	*				

116.	What does VRAM stand for?	[]	
	a) video RAM b) verilog RA	Mc) virtual RAM d) volatile RA	M
117.	Which mode of the Intel timer 8253 p	rovides a software watchdog time	r?[]
	a) rate generator	b) hardware triggered strobe	
	c) square wave rate generator	d) software triggered strobe	
118.	Which processors use fast interrupts?	[]	
	a) DSP processor	b) RISC processor	
	c) CISC processor	d) Harvard processor	
119.	What is the disadvantage of the fast in	iterrupts? []
	a) stack frame b) delay	c) size of routine	d) low speed
120.	Which of the following forces a stand	ard service routine? []
	a) READY interrupt b) IR	QA interrupt c) NMI	d) software interrupt
121.	RTC chips use to compute time	ne, date when the power is off.	[]
	a) ac supply b) generators	c) rectifiers	d) battery
122.	RTC is used for	[]	
	a) conversion	b) communication	
	c) real time and clock measurement	d) memory management	
123.	FPGA means []		
	a) Field Programmable Gate Array	b) Forward Programma	able Gate Array
	c) Forward Parallel Gate Array	d) Field Parallel Gate Array	
124.	Little Endian Processor means	[]	
	a)Store the lower order byte of the dat	a at the lowest address and the hig	gher order byte of
	the data at the highest address memory		
	b) Store the higher-order byte of the d	ata at the lowest address and the le	ower order-byte of the data
	at the highest address of memory		
	c) Store both higher order and lower of	•	•
	d) Store both higher order and lower b	•	
	e) Store both higher order and lower b	-	ss of memory
125.	Watch dog timer is a hard ware timer	for [
	•	onitoring the firmware execution	
	c) Both a& b d) no	ne	

Signature of the Faculty

Signature of HOD

Department of Electrical and Electronics Engineering IV B.Tech. II Sem (MR 15 Regulations, 2016-2017 Admitted Batch) I Mid Examination Subjective Question Bank

Branch: EEE

Subject:50342 -Renewable Energy Sources

Name of the faculty: Mr.Ch. Narendra Kumar

Q. No.	Question	Bloom's Taxonomy Level	СО
1.	Explain about classification of energy resources	Understanding	1
	OR		
2.	Explain about the solar radiation geometry	Understanding	1
	Colorles do march of Joseph Color Color and Donas Language 21		
3.	Calculate the number of day light hours at Bangalore on 21 June and 21 December in a leap year. The latitude of Bangalore is 12° 58'	Applying	1
	OR		
4.	Explain about the advantages and limitations of renewable energy sources.	Understanding	1
5.	Explain about pyrheliometers.	Understanding	1
	OR		
6.	Derive the expression for solar radiation on titled surface.	Applying	1
7.	Calculate the sun's altitude angle and Azimuth angle at 7:30 am solar time on August 1 for a location at 400N latitude.	Applying	1
	OR	<u> </u>	<u> </u>
8.	Explain about solar radiation data	Understanding	1
	Module II		

		Understanding	2
	OR		
2.	Classify focusing types of collectors with neat sketches	Understanding	2
3.	Explain the advantages and disadvantages of concentrating collectors over flat plate collectors	Understanding	2
	OR	<u> </u>	
4.	Explain about the principle of operation and description of non convective solar pond	Understanding	2
5.	Illustrate advantages and disadvantages of photovoltaic solar energy conversion.	Understanding	2
	OR		
6.	Explain with neat sketches about solar water heating	Understanding	2
7.	With a neat sketch explain about solar distillation	Understanding	2
	OR		
8.	Explain design principle and constructional details of a Box type solar cooker	Understanding	2
	Module III	<u> </u>	
1.	Explain with neat sketch the working of a wind energy system with main components	Understanding	3
	OR	<u> </u>	
2.	Explain about Horizontal Axis Windmills with neat sketches	Understanding	3

3.	Explain the advantages and disadvantages of horizontal and vertical axis wind mills	Understanding	3		
	OR				
4.	Explain the advantages and disadvantages of horizontal and vertical axis wind mills	Understanding	3		
5.	Determine the wind mill rotor diameter to operate a centrifugal pump, which will have a discharge of 40000 litres/day with a total head of 10m. The pump operates for 10 hours in a day. The rated speed of wind is 6 m/s. The power coefficient is 0.3. Density of air is 1.2 kg/m3. Assume transmission efficiency 95%, pump efficiency as 35%.	Applying	3		
OR					
6.	Derive the expression for power in wind mill	Applying	3		

Signature of the Faculty

Signature of the HoD

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) IV B.Tech II Sem (MR15 Regulations-2016-2017 Admitted Batch) Subject: 50342 - RENEWABLE ENERGY SOURCES

Branch: EEE Name of the Faculty: Mr.Ch. Narendra

Kumar

MULTIPLE CHOICE QUESTIONS

MODULE I

	1	The predominant source of energy on earth is	[]
	a.	Electricity		
	b.	Natural Gas		
	c.	The Sun		
	d.	Plants		
2		In what form can solar energy be used?	[]
	a.	Thermal energy		
	b.	Electrical energy		
	c.	Mechanical Energy		
	d.	All of above		
3		Solar energy travels through space by the process of	[]
	a.	Conduction		
	b.	Convection		
	c.	Radiation		
	d.	Transportation		
4		The value of solar constant is approximately	[]
	a.	6.5 kW/m^2		
	b.	$1.36 \mathrm{kW/m^2}$		
	c.			
	d.	10 kW/m^2		
5		Pyranometer is an instrument used for measuring the	[]
	a.	Temperature of solar photovoltaic cell		
	b.	Solar irradiance of a solar photovoltaic cell		
	c.	Wind speed of a solar photovoltaic cell		
	d.	Efficiency of a solar photovoltaic cell		
6		A pyrheliometer is an instrument used to measure the	[]
	a.	Temperature of solar photovoltaic cell		
	b.	Intensity of direct solar radiation at normal incidence		
	c.	Intensity of indirect solar radiation		
	d.	Efficiency of a solar photovoltaic cell		
7		The term beam solar radiation is related to	[]
	a.	Small hydropower		
	b.	Flat plate solar collector		
	c.	Turbine		
	d.	Coal extraction mechanism		
8		Sunlight light reaches the earth through	[]
	a.	Direct radiation		

	b. c. d.	Diffuse radiation Scattered radiation All of above		
9	G.	Solar radiation that is received after it changes its direction due to reflection and scattering in the atmosphere is called	[]
	a.	Diffused radiation		
	b.	Scattered radiation		
		Beam radiation		
1.0	d.	Radiation	-	,
10		Solar radiation that has not been absorbed or scattered and reaches the earth surface directly is called	L]
	a.	Beam radiation		
	b.	Scattered radiation		
		Diffused radiation		
11	d.	Radiation The total color rediction received at any resist on the control of the rediction.	г	1
11		The total solar radiation received at any point on the earth's surface is termed	L]
	0	as Insulation		
	a. b.	Insolation		
	о. с.	Radiation		
		Insulated radiation		
12		The power from the sun intercepted by the earth is approximately	Г]
12	a.	1.8 x 10 ⁸ MW	L	J
		1.8 x 10 ¹¹ MW		
		$1.8 \times 10^{14} \mathrm{MW}$		
	d.	$1.8 \times 10^{17} \mathrm{MW}$		
13		The extraterrestrial radiation flux varies by % over a year.	[1
10	a.	± 1.1	L	J
	b.	± 2.2		
	c.	± 3.3		
	d.	± 4.4		
14		Absorption of Solar radiations at earth's surface occur due to presence	ſ	1
		of	_	_
	a.	Ozone		
	b.	Water vapours		
	c.	Carbon di-oxide		
	d.	All of the above		
15		The zenith angle is the angle made by the sun's rays with the to a	[]
		surface.		
	a.	normal, horizontal		
	b.	tangent, horizontal		
	c.	normal, vertical		
	d.	tangent, vertical	_	_
16		Solar radiation flux is usually measured with the help of a	L]
	a.	Anemometer		
	b.	Pyranometer		

c.	Sunshine recorder		
d.	All of the above		
17	The angle made by the plane surface with the horizontal is known as	[]
a.	Latitude		
b.	Slope		
c.	Surface azimuth angle		
d.	Declination		
18	The angle made in the horizontal plane between the horizontal line due	[]
	south and the projection of the normal to the surface on the horizontal		
	plane is		
a.	Hour angle		
b.	Declination		
c.	Surface azimuth angle		
d.	Solar altitude angle		
19	Surface azimuth angle varies from	[]
	0.4 000		
a.	0 to 90°		
b.			
C.			
d.	-180° to 180°	г	,
20	The hour angle is equivalent to]
a.	10° per hour		
b.	15° per hour		
C.	1		
d.	25° per hour	г	,
21	The complement of zenith angle is	Ĺ	J
a.	ϵ		
b.			
c.	e		
d.	Slope	r	,
22	The correction has a magnitude of minutes for every degree	Ĺ]
	difference in longitude		
a.	2		
b.			
C.			
d.		г	,
23	The global radiation reaching a horizontal surface on the earth is given	L]
	by Hovely been rediction - Hovely diffuse rediction		
a.	Hourly beam radiation + Hourly diffuse radiation		
b.	Hourly beam radiation – Hourly diffuse radiation		
C.	j j		
d.	Hourly diffuse radiation / Hourly beam radiation	г	7
24	The ratio of the beam radiation flux falling on a tilted surface to that	Ĺ]
_	falling on a horizontal surface is called the		
a.	Radiation shape factor		
b.	Tilt factor		
c.	Slope		

	d.	None of the above		
25		The sun subtends an angle of minutes at the earth's surface.	[]
	a.	22		
	b.	32		
	c.	42		
	d.	52		
26		The value of Solar Constant is	[]
	a.	1347 W/m^2		
	b.	1357 W/m^2		
	c.	1367 W/m^2		
	d.	1377 W/m^2		
27		Solar radiation received on the earth surface lies within the range of	[]
	a.			
	b.	0.38-0.78 microns		
	c.	0-0.38 microns		
	d.	None of these		
28		Insolation is referred to as	ſ]
	a.	Direct radiation received at any time	L	
	b.	Diffuse radiation received at any time		
	c.	Total radiation received per unit time per unit area		
	d.	None of these		
29	٠.	What is angle of declination on 305th day of year and what day is it?	[]
	a.	-23.26°, November 2	L	J
	b.	-15.06°, November 1		
	c.	-18.96°, November 2		
	d.	-10 52° November 1		
30		The time from sunrise to sunset is termed as	Γ]
50	a.	Slope	L	J
	b.	Day length		
		Local solar time		
		Solar intensity		
31	u.	LST stands for	Г	1
31	a.	Local standard time	L	1
	b.	Local solar temperature		
	о. с.	Low surface temperature		
	d.	Land surface temperature		
32		What is the angle of declination on May 12 considering it's a leap year?	Г	1
32		20.34 °	L]
	a.	22.85 °		
	b.	29.42 °		
	c.			
22	d.	12.4° Most of the data an asian rediction received on the surface of the comb are	г	7
33		Most of the data on solar radiation received on the surface of the earth are	L	J
		measured by		
	a.	Solarimeter		
	b.	Pyranometer Delta-l'amount and a second and		
	c.	Pyheliometer		

d.	Sunshine recorder		
34	Which of the following energy has the greatest potential among all the	[]
	sources of renewable energy?		
a.	Solar energy		
b.	Wind Energy		
c.	Thermal energy		
d.	Hydro-electrical energy		
35	In what form is solar energy is radiated from the sun?	[]
	Ultraviolet Radiation		
	Infrared radiation		
	Electromagnetic waves		
d.		_	
36	Units for solar radiations	[]
	cal/cm ² /day		
	cal/mtrs		
c.	langleys		
d.	both A&B	-	-
37	The duration of bright sunshine in a day is measured by means of a]
a.	Sunshine recorder		
	Solarimeter		
	Pyranometer		
	Pyrheliometer		
38	What is 'n' in the following solar intensity formula?	ſ]
	$I = I_{sc} \{1 + 0.033\cos(360n/365)\}$	L	
a.	Day of the year		
	Month of the year		
c.	The year		
d.	Week of the year		
39	When the sun is directly on the top of head, it as referred to	ſ]
a.	Zenith	_	_
b.	Azimuth		
c.	Declination		
d.	Hour angle		
40	Radiation intensity 'I' normal to the surface is given by	[]
a.	ΙCosθ		-
b.	Itan θ		
c.	$ICot\theta$		
d.	$I\sin\theta$		
41	By which of the following symbol is solar Declination denoted	[]
a.	δ	_	
b.	ρ		
c.	Δ		
d.	γ		
42	The following is (are) laws of black body radiation.	[]
a.	Plank's law		

	b.	Stefan-Boltzmann law		
	c.	both (A) and (B)		
	d.	None of the above		
43		Which of these factors are responsible for variation in Insolation?	[]
	a.	The angle of inclination of the sun's rays		
	b.	The length of the day		
	c.	The transparency of the atmosphere		
	d.	All of the above		
44		The annual average daily diffuse radiation received over the whole country is	ſ]
		around		,
	a.	100 langleys		
	b.	150 langleys		
	c.	175 langleys		
	d.	200 langleys		
45	u.	The annual average daily global radiation received over the whole country is	Г]
15		around	L	J
	a.	250 langleys		
	b.	350 langleys		
	c.	450langleys		
	d.	550langleys		
46		Peak value of solar radiation generally measure in april or may with parts of	Г]
10		over 600 langleys	L	J
	a.	Rajasthan		
	b.	Gujarat		
	c.	Rajasthan & Gujarat		
	d.	None of the above		
47	ч.	Solar radiation incident outside the earth's atmosphere is called	[]
.,	a.	extraterrestrial radiation.	L	J
	b.	Terrestrial radiation		
		Incidence radiation		
	d.	None of the above		
48	۵.	is a term used to describe infrared radiation emitted from the atmosphere	Г]
	a.	terrestrial radiation	L	1
	b.	extraterrestrial radiation.		
	c.	Incidence radiation		
	d.	None of the above		
49	٠.	A shadow from a vertical stick at noon is longer than on any other day during	[]
		the	L	,
	a.	winter solstice		
	b.	spring equinox		
	c.	summer solstice		
	d.	fall equinox		
50		Earth's North Pole is not pointing toward the Sun or away from the Sun	Γ	1
- 0		during	L	1
	a.	winter solstice		
	b.	spring equinox		
		1 0 1" -		

- c. summer solstice
- d. lunar first quarter

MODULE II

51		Direct Solar energy is used for	[]
	a.	Water heating		
	b.	Distillation		
	c.	Drying		
	d.	All of the above		
52		A liquid flat plate collector is usually held tilted in a fixed position, facing	[]
		if located in the northern hemisphere.		
	a.	North		
	b.	South		
	c.	East		
	d.	West		
53		The collection efficiency of Flat plate collector can be improved by	[]
	a.	putting a selective coating on the plate		
	b.	evacuating the space above the absorber plate		
	c.	both (A) and (B)		
	d.	None of the above		
54		The efficiency of various types of collectors with	[]
		temperature.		
	a.	increases, decreasing		
	b.	decreases, increasing		
	c.	remains same, increasing		
	d.	depends upon type of collector		
55		Maximum efficiency is obtained in	[]
	a.	Flat plate collector		
	b.	Evacuated tube collector		
	c.	Line focussing collector		
	d.	Paraboloid dish collector		
56		The following type of energy is stored as latent heat	[]
	a.	Thermal energy		
	b.	Chemical energy		
	c.	Electrical energy		
	d.	Mechanical energy		
57		Which of the following type of collector is used for low temperature systems?	[]
	a.			
	b.	Line focussing parabolic collector		
	c.	Paraboloid dish collector		
	d.	All of the above		
58		In the paraboloid dish concept, the concentrator tracks the sun by rotating	[]
		about		
	a.	One axes		
	b.	Two axes		
	c.	Three axes		

	d.	None of the above		
59		Which type of dryer can be used to dry fruits and vegetables using renewable	[]
		energy?		
	a.	Solar dryer		
	b.	Oil furnace		
	c.	Coal furnace		
	d.	Wood-based furnace		
60		Solar photovoltaic cell converts solar energy directly into	[]
	a.	Mechanical energy		
	b.	Electricity		
	c.	Heat energy		
	d.	Transportation		
61		What does SPV stand for with respect to solar energy?	[]
	a.	Solar photovoltaic	-	_
	b.	Solid platevoltaic		
	c.	Solar platevoids		
	d.	None of the above		
62		is a glazing which limits the radiation and convection heat losses	[]
	a.	Absorber plate	_	_
	b.	Selective surface		
	c.	Insulation		
	d.	Transparent cover		
63		.To how many types are flat plate collectors divided depending on type of	[]
		heat transfer fluid?		
	a.	2		
	b.	3		
	c.	4		
	d.	5		
64		What are provided to minimize heat loss?	[]
	a.	Absorber plate		
	b.	Surface plate		
	c.	Insulation		
	d.	Casing		
65		Which part of flat plate collectors is coated in black?	[]
	a.	Transparent cover		
	b.	Absorber plate		
	c.	Insulation		
	d.	Fins		
66		In which collector does air flow without any obstruction?	[]
	a.	Porous absorber plate		
	b.	Non-porous absorber plate		
	c.	Over lapped glass absorber		
	d.	Finned absorber		
67		In which absorber matrix material is arranged and the back absorber plate is	[]
		eliminated?		
	a.	Porous absorber plate		

	b.	Non-porous absorber plate		
	c.	Over lapped glass absorber		
	d.	Finned absorber		
68		The function of a solar collector is to convert	[]
	a.	Solar Energy into Electricity	-	-
	b.	Solar Energy radiation		
	c.	Solar Energy thermal energy		
	d.	Solar Energy mechanical energy		
69		Reflecting mirrors used for exploiting solar energy are called	Γ]
0,	a.	Mantle	L	J
	b.	Ponds		
	c.	Diffusers		
	d.	Heliostats		
70	u.	Flat plate collector absorbs	[1
70	a.	Direct radiation only	L	J
	b.	Diffuse radiation only		
	c.	Direct and diffuse both		
		All of the above		
71	u.	Most widely used solar material is	Г	1
/ 1	a.	Arsenic		J
	b.	Cadmium		
	о. с.	Silicon		
	d.	steel		
72			г	1
12		Photovoltaic cell or solar cell converts	L]
	a. b	Thermal energy into electricity		
	b.	Electromagnetic radiation directly into electricity		
	C.	Solar radiation into thermal energy		
72	d.	Solar radiation into kinetic energy Townsettyre attained by a flat plate collector is of the	г	1
73		Temperature attained by a flat-plate collector is of the	L	J
	a.	Order of about 90°C		
	b.	Range of 100°C to 150°C		
	c.	Above 150°C		
71		None of the above	r	,
74		The voltage of a single solar cell is	L]
	a.	0.2 v		
	b.	0.5 v		
	c.	1.0 v		
	d.	2.0 v	-	
75		Photovoltaic cell are made up of	L]
	a.	Conductor material		
	b.	Semi conductor material		
	c.	Insulators		
_	d.	All of the above		
76		Temperature attained by cylindrical parabolic collector is of the order of	[]
	a.	$50 - 100 ^{\circ}\text{C}$		
	b.	$100 - 150 ^{\circ}\text{C}$		

	c.	150 – 200 °C		
	d.	200 – 300 °C		
77		Who discovered the photovoltaic effect	[]
	a.	American Physicist Enrico Fermi		
	b.	Italian Physicist Alessandro Volta		
	c.	German Physicist Heinrich Rudolf Hertz		
	d.	French Physicist Edmond Becquerel		
78		The sun tracking is needed in the case of	[]
	a.	Flat plate collector		
	b.	Cylindrical parabolic and paraboloid		
	c.	Both of them		
	d.	None of these		
79		A solar pond is a combination of which of the following combinations?	[]
	a.	Solar energy collection & heat storage		
	b.	Solar energy storage & heat collection		
	c.	Solar energy collection & energy storage		
	d.	None of the above		
80		What material does a solar pond contain?	[]
	a.	Salt	-	-
	b.	Sugar		
	c.	Stone		
	d.	Lime		
81		The cylindrical Parabolic collector is oriented with the focal axis pointed in	ſ]
		the	_	_
	a.	East –West direction		
	b.	North –South direction		
	c.	East –West direction & North –South direction		
	d.	None of the above		
82		The amount of photo generated current increases slightly with increase in	[]
	a.	Temperature	_	_
	b.	Photons		
	c.	Diode current		
	d.	Shunt current		
83		photo voltaic devices in the form of thin films.	[1
	a.	Cadmium Telluroide	-	-
	b.	Cadmium oxide		
	c.	Cadmium sulphide		
	d.	Cadmium sulphate		
84		Which of the following is NOT utilized in the process of harnessing solar	[]
		energy?		•
	a.	Gas		
	b.	Mirror		
	c.	Steam		
	d.	Photovoltaic cell		
85		The absorber located at focus of Point Focusing Collector is made of	ſ]
-	a.	Copper-steel	L	,
		**		

		Aluminium-copper Zirconium-copper		
		. None of the above		
86	ч.	Pebble bed storage is the type of solar energy storage	[]
	a.	Mechanical	L	J
	b.	Electrical		
	c.	Chemical		
		Thermal		
87		Concentration ratio is high in case of collectors	Г	1
	a.	Flate plate collector	L	J
		Parabolic collectors		
		Mirror strip collector		
	d.	None of the above		
88	u.	Combination of solar cells (Photo-voltaic cells) designed to increase the	г	1
00			L]
		electric power		
		output is called a		
	a.	Solar cell		
	b.	Solar module		
	C.	Solar array		
	d.	Both B & C	г	1
89		Thermal energy from solar pond is used to drive aheat engine	[]
	a.	Carnot cycle		
	b.	Joule cycle		
		Atkinson cycle		
	d.	Rankine cycle		
90		Fresnel lens collector istype of collectors	L	J
		Line focusing		
		Point focusing		
	c.	Flat plate collector		
	d.	None	_	
91		The refrigeration techniques used for solar cooling is	Ĺ]
	a.	Vapour Compression		
ł	b.	Absorption		
	c.	Both a & b		
(d.	None		
92		CPC reflectors can be designed for absorber shapes	[]
i	a.	Flat one sided absorber		
ł	b.	Flat two sided absorber(fin)		
(c.	Wedge-like absorber		
(d.	All the above		
93		involves a material that undergoes no change in phase over	[]
		the temperature domain encountered in the storage process		
;	a.	Sensible heat storage		
ł	b.	Latent heat storage		
(c.	Packed bed storage		
(d.	Water storage		

94	Central receiver system usesof flat tracking mirror scaled	[]
	heliostats to reflect the solar energy to central receiver mounted on tower.		
a.	1-10		
b.	10-100		
c.	100-10000		
d.	None of the above		
95	Applications of Solar air heaters	[]
a.	Heating buildings	-	-
b.	Drying agricultural produce and lumber.		
c.	Heating green houses.		
96	The factors influencing the electrical design of the solar array	[]
a.	The sun intensity	L	1
b.	The sun angle		
c.	The operating temperature		
d.	All of the above		
97		[1
<i>)</i>	to heat-transfer fluid have effective freeze protection as long as the	L	J
	proper antifreeze concentration is maintained.		
0	• •		
a.	propylene glycol		
b.	ethylene glycol		
C.	propylene glycol & ethylene glycol		
d.	None of the above	г	,
98	First solar cell was invented by	[]
a.	George Fritts		
b.	Jefferson Fritts		
c.	Charles Fritts		
d.	Fornster Fritts	-	
99	Which of the following solar cookers is the most efficient and has the shortest	L]
	cooking time?		
a.	Box cooker		
b.	Parabolic cooker		
c.	Panel cooker		
d.	Cardboard type cooker		
100	technique are used for distillation	Ĺ]
a.	Flash Distillation		
b.	Vapor Compression Process		
c.	Solar Distillation		
d.	All the above		
	MODULE III		
101	What kind of energy does a wind turbine use?	[1
a.	Kinetic energy	-	-
b.	Potential energy		
c.	Chemical Energy		
d.	Thermal energy		
			

102	Which of the following states in India ranks first in the installation of wind	[]
	power?		
a.	Gujarat		
b.	Andhra Pradesh		
c.	Maharashtra		
d.	Tamil Nadu		
103	Horizontal axis windmills of modern design can	[]
a.	Always turn towards the direction of the wind		
b.	Never adjust the energy output		
c.	Never turn towards the direction of the wind		
d.	None of the above		
104	The maximum energy conversion efficiency of a wind turbine for a given	[]
	swept area is		
a.	25.1%		
b.	50.4%		
c.	59.3%		
d.	99.9%		
105	If the velocity of wind is doubled, then the power output will increase by	[]
a.	10 times		
b.	8 times		
c.	2 times		
d.	6 times		
106	The term Darrious&Savonius rotor are related to	[]
a.	Small hydropower		
b.	Wind energy		
c.	Turbine		
d.	Coal extraction mechanism		
107	Power output from a wind energy electric generator is directly proportional to	[]
a.	wind velocity		
b.	Square of wind velocity		
c.	Cube of wind velocity		
d.	Square root of wind velocity		
108	Another name for a windmill is	[]
a.	Wind farm		
b.	Propeller		
c.	Wind station		
d.	Wind turbine		
109	A place where many wind turbines are installed together to produce	[]
	electricity is called a		
a.	Wind farm		
b.	Propeller collection		
c.	Wind station		
d.	Wind turbine station		
110	Wind blows because of a difference in	[]
a.	Temperature		
b.	Latitude		

c. d.	Longitude		
111	Height Wind turbings using corodynamic lift produce more energy for a given erec	г	1
111	Wind turbines using aerodynamic lift produce more energy for a given area than wind turbines using aerodynamic drag as the	L]
0	·		
a. b			
b.			
c.	Drag services capture more energy because of greater friction on the blade		
d.	surfaces		
112		г	1
112	The relationship between power available from wind 'P' and wind velocity 'v' is	L]
0	Ράν		
	P \(\dag{a} \times \) P \(\dag{a} \times \)		
	P ά V ³		
	P = v	г	1
113	An anemometer is an instrument used for measurement of	[J
a.			
	Wind speed		
	Temperature gradient		
d.	1	г	,
114	Lower speed wind turbines are mainly driven by	[]
a.			
	Lift forces		
	Push forces		
d.		-	
115	The torque causing the rotation of a rotor is due to the	L]
a.	ϵ		
	Gravitational force		
	Force of lift		
d.		_	_
116	With increase in height, wind speed	L]
a.	Increases		
b.	Decreases		
c.	Remains the same		
d.	None of the above		
117	Wind power plants are required to have a large rotor size for large power	[]
	output due to		
a.	Low power density of air stream		
b.	Lift force acting perpendicular to the direction of wind flow		
c.	Lift force being more than drag force		
d.	Drag force acting perpendicular to lift force		
118	Which of the following forces act on the blades of wind turbine rotor?	[]
a.	Lift force		
b.	Drag force		
c.	Both (a) & (b)		
d.	None of the above		

119	Wind machine with Darrious type of rotor is a	[]
a.	Vertical axis machine		
b.	Horizontal axis machine		
c.	Machine that can spin in one direction only		
d.	None of the above		
120	During the day, the surface wind flows	[]
a.	From sea to land		
b.	From land to sea		
c.	On the surface of the sea		
d.	On the surface of land		
121	Air density at standard conditions is about	[]
a.	1.885 kg/m^3		
b.	2.55 kg/m^3		
c.	1.226 kg/m^3		
d.	3.267 kg/m^3		
122	The main disadvantage of wind power is that	[]
a.	It is available only in coastal areas		
b.	Wind energy systems are noisy when in operation		
c.	Large land area is required		
d.	The capacity utilization is less		
123	Wind energy conversion devices based on drag force	[]
a.	Move faster than wind		
b.	Move slower than wind		
c.	Move slower than wind		
d.	Do not depend on the velocity of wind		
124	The rate of change of wind speed with height is called	[]
a.	Wind shear		
b.	Wind rose		
c.	Wind solidity		
d.	None of the above		
125	The wind intensity can be described by	[]
a.	Reynolds number		
b.	Mach number		
c.	Beaufort number		
d.	Froude number		

Signature of the faculty

Signature of the HOD

IV.B.TECH& II-sem (MR 15) I Mid Examination Subjective Question Bank

Subject: Utilization of Electrical Energy Branch: EEE

Subject Code: 50238

Name of the faculty: Dr. D. Raja Reddy

MODULE I

Q.No	Question	Bloom's Taxonomy Level	СО
1.	Classify the different methods of electric heating.	Understanding	1
	OR		
2.	Explain the concept of direct resistance heating method.	Understanding	1
3.	Explain the concept of indirect resistance heating method	Understanding	1
	OR		•
4.	Explain the construction and working of direct arc furnace	Understanding	1
5.	Explain the construction and working of indirect arc furnace	Understanding	1
	OR		•
6.	Explain the construction and working of resistance welding method.	Understanding	1
I		1	
7.	Explain the construction and working of arc welding method.	Understandin g	1
	OR	1	1
8.	Explain the construction and working of dielectric heating.	Understandin g	1

MODULE II

Q.No.	Question	Bloom's Taxonomy Level	СО	
				ı

1.	Analyze the working of fluorescent tube with the help of a circuit	Analyzing	2
	diagram given function of various parts.		
	OR		
2.	Classify the different types of lighting schemes	Analyzing	2
			1
3.	Explain the working of filament lamp with the help of a circuit diagram.	Understanding	2
	OR		
4.	Explain the street lighting and flood lighting	Understanding	2
	•		
5.	Explain the laws of illumination	Understanding	2
	OR		
6.	Explain the working of MV and SV lamps with the help of a circuit diagram.	Understanding	2
7.	Explain the basic principle of light control.	Understanding	2
	OR		
8.	Explain about photometry and polar curves.	Understanding	2

MODULE III

Q.No.	Question	Bloom's Taxonomy Level	СО				
1.	Explain the different systems of electric traction existing in India.	Understanding	3				
	OR						
2.	Explain the track Electrification.	Understanding	3				
		1	I				
3.	Explain the method of electric plugging braking.	Applying	3				
	OR						
4.	Explain the method of electric rheostatic braking.	Applying	3				

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

IV-M.Tech II- Sem I Mid Examination objective Question Bank

Subject:	UEE	Branch	: EEE

Subject Code: 50238

Name of the faculty: Dr.RAJA REDDY. DUVVURU

Module-I

1.	Which of the following	heating element wi	t will have the least temperature range?				
	(a) Eureka	(b) silicon carbon	(c) Nichrome	(d) kanthal			
2.	Which of the following Heating?	heating element ca	n give highest temperature	range in resistance	e]		
	(a) Nichrome (b) silic	on carbide (c) copper (d) nickel-cr-f	e alloy			
3.	Direct resistance heatir (a) Electrode boiler	ng is used in (b) salt bath furna	ce (c) resistance welding	[(d) all of above			
4.	Radiant heating is used (a) Melting of ferrous n		(b) annealing of meta	[]		
	(c) Drying of paints and	varnishes	(d) all of above				
5.	Induction heating takes (a) Insulating materials	s place in	(b) conducting and ma	[agnetic materials			
	(c) Conducting but non	magnetic materials	5				
	(d) Conducting materia	l but may be magne	etic or non magnetic				
6.	Induction furnaces are	used for			[
	(a) Heat treatment of c	asting	(b) heating of insulation	ons			
	(c) Melting of aluminum	n (d) all of above				

7.	High frequency induc (a) Ferrous metals on	tion heating is used for ly	(b) non ferrous m	[netals only]
	(c) Both ferrous and r	non ferrous metals only	(d) all of above		
8.	In dielectric heating c	urrent flows through (b) dielectric	(c) metallic cond	[uctor]
	(d) Ionic discharge be	tween dielectric mediun	n and metallic condu	uctor	
9.	For dielectric heating (a) 10KHZ to 100KHZ	the range of frequency (b) 100KHZ to 10MHZ] MHZ
10		eating element should b thstand the required ter		[getting oxidized]
	(b) At low resistivity	(c) at low melting poi	nt (d) at high tempe	erature coefficient	
11.Hea	at is transferred simulta	nneously by condition, co	onvection and radiat	ion []
(a) insi	de boiler furnaces	(b) during melting of	ice		
(c) thre	ough the surface of the	insulted pipe carrying st	team		
(d) fro	m refrigerator coils to f	reezer of a refrigerator			
	e process of heat trans s atmosphere is known	fer during the reentry of as	satellites and missil	es, at very high spee [ds, into]
(a) abl	ation (b) ra	diation (c) viscous di	ssipation (d) irradi	ation	
13. Wł	nich of the following ha	s the highest value of th	ermal conductivity ?) []
(a) Wa	ter (b) Steam	(c) Solid ice (d) M	lelting ice		

14. Induction heating process is based on which of the following principles ? []							
(a) Thermal ion release principle	(b) Nucleate heating principle						
(c) Resistance heating principle	(d) Electro-magnetic induction principle						
15. Which of the following insula	ating materials was suitable for low temperature application	s ?[]					
(a) Asbestos paper (b) Diato	omaceous earth (c) 80 percent magnesia(d) Cork						
16. A non-dimensional number g	generally associated with natural convection heat transfer is	[]					
(a) Prandtl number (b) Gras	hoff number (c) Pecelet number (d) Nusselt number						
17. The temperature inside a fur	nace is usually measured by which of the following?]					
(a) Optical pyrometer	(b) Mercury thermometer						
(c) Alcohol thermometer	(d) Any of the above						
18. Which of the following will h	appen if the thickness of refractory wall of furnace is increas	sed ? []					
(a) Heat loss through furnace wa	all will increase (b) Temperature inside the furnace will fall						
(c) Temperature on the outer su	rface of furnace walls will drop						
(d) Energy consumption will incr	ease						
19. The material of the heating ϵ	element for a furnace should have	[
(a) lower melting point	(b) higher temperature coefficient						
(c) high specific resistance	(d) all of the above						
20. In a resistance furnace the at	20. In a resistance furnace the atmosphere is						
(a) oxidizing (b) deoxidizing	(c) reducing (d) neutral						

21. In electric resistance welding]]
(a) The current required exceeds 100	(b) The voltage required ranges	from 4 to 12 V	
(c) power supplied to the weld usually	y ranges from 60 W to 80 W for eac	h Square mm o	f area
(d) All of above			
22. Proper selection of welding depend	s upon in addition to cost involved]]
(a) Kinds of metals to be joined	(b) nature of product to be fabrica	ted	
(c) Production technique used	(d) All of above		
23. In flash butt welding]]
(a) No special preparation of the face	s to be weld is necessary		
(b) Clean and pure weld is obtained	(c) power requirement is less (d) All of above	
2 4. Spot welding process basically depe	nds on]]
(a) Generation of heat	(b) application of forging process		
(c) Both a & b	(d) ohmic resistance		
25. Projection welding can be considered	ed as a mass production from at]]
(a) Seam welding (b) spot weldin	g (c) upset welding (d) flash welding	
26. In seam welding]]
(a) The work piece is fined and disc el	ectrode move		
(b) The work piece is moves but rotat	ing electrodes are fined		

	(c) The	electro	des used	d are of	disc (o	r) roller	shape	(d) eit	her a or	b & c			
2 7.	In an e	electric	arc weld	ling the	voltag	e requir	ed to ma	aintain i	the arc w	ill be		[]
	(a) 250-	-500 V ((b) 150-2	250 V		(c) 20-	30 V		(d) bel	ow 20 V			
2 8.	For an	electri	c arc we	lding th	ne curre	ent range	e is used					[]
	(a) 50-1	.00 A	(b) 30-5	60 A		(c) 20-	30 A		(d) bel	ow 20 A		
29	. Carb	on arc	welding	as the i	main dr	awback	of					[]
	(a) Occ	urrence	e of blow	holes	owing t	to magn	etic arc l	oelow e	specially	while w	elding ne	ear of t	he
	Work	piece											
	(b) Nee	d of se	parate fi	lter (c)	necess	sary of b	are elec	trodes	(d) fast	consum	ption of e	electro	des
30.	Subme	rged ar	c proces	s is cha	aracteri	zed by						[]
	(a) High	n weldii	ng currei	nt (b	smooth	heads	(c) dee	p pene	tration	(d) all o	f above		
21	\M/hich	of the	followin	og ioint	have h	igh corre	osion res	cistance	.2			[]
										Nama af	'4la a ala av		J
		elding j	followin		veted jo		(c) Bolte			None of	the abov	е	1
										(J) N	Jama af 41	l 	
		amma	·			ght rays		nfrared	-	(a) N	lone of th		
			single-U									[]
([a) u _l	pto 10r	nm	(b)	5-15m	m	(c)	0-20n	nm	(d)1	5-25mr	n	
3	4.Doubl	e-V and	d double	-U butt	welds	are used	d for pla	tes of th	nickness			[]
	(a	ι)	1-5mm		(b)	5-10m	m	(c) 1	0-15mm	(d) Ov	er 15mm		

35. Which of the following types is not fillet weld?								
(a)butt joint	(b)lap joint	(c)T-joint	(d)Corner joint					
36.The metals	having good we	ldability, in desc	ending order are]]			
(a)cast steel, ir	on, carbon steel	, cast iron	(b)carbon steel, iron, cas	st steel, cast iron				
(c)iron, carbon	steel, cast steel	, cast iron	(d)cast iron, iror	ı, carbon steel, cas	st steel			
37.In fusion we	elding, penetrati	on is the ratio of	f]]			
(a)width of the	weld to its dep	th (b)leng	gth of the weld to its dept	า				
(c)depth of the	weld to its widt	:h	(d)depth of the weld to	its length				
38.Which of th	e following is an	example of plas	stic welding?]]			
(a)Gas welding	(b)Arc welding	(c)Forge weldi	ng (d)Thermit weld	ing				
39.Which of th	ne following is a	n example of fus	ion welding?]]			
(a)Arc welding	(b)Forge weldi	ng (c)Resi	istance welding (d)Therr	nit welding with p	ressure			
	_	ling process is us	sed for welding of sheet m	etals in automobi	_			
craft industries	5?				[
(a)Shield meta	l arc welding	(b)Gas tungste	n arc welding					
(c)Thermit wel	ding	(d)Resistance v	welding					
41. Which of the following insulating materials was suitable for medium temperature applications []								
(a) Asbestos pa	aper (b) Dia	tomaceous eart	h (c) 80 percent magnesia	(d) none				
42. A non-dime	ensional numbei	generally assoc	iated with natural convec	tion heat transfer	is[]			
(a) Prandtl nun	nber (b) Gra	shoff number	(c) Pecelet number	(d) Nusselt numbe	er			

43. The temperature inside a arc furnace is usually measured by which of the following []						
(a) Optical pyrometer (b)	Mercury thermometer					
(c) Alcohol thermometer (d)	Any of the above					
44. Which of the following will happen if th	e thickness of refractory wall of furnace is increas	sed ? []				
(a) Heat loss through furnace wall will incre	ease (b) Temperature inside the furnace will fall					
(c) Temperature on the outer surface of fur	rnace walls will drop					
(d) Energy consumption will increase						
45. The material of the heating element for]	r a furnace not should have	[
(a) lower melting point (b) higher t	temperature coefficient					
(c) high specific resistance (d) none						
46. In a arce furnace the atmosphere is	[]					
(a) oxidizing (b) deoxidizing (c)	reducing (d) none					
47. In electric resistance welding]]				
(a) The current required exceeds 100 (I	b) The voltage required ranges from 4 to 12 V					
(c) power supplied to the weld usually rar	nges from 60 W to 80 W for each Square mm of	area				
(d) All of above						
48. In flash butt welding]]				
(a) No special preparation of the faces to	be weld is necessary					
(b) Clean and pure weld is obtained (c)	power requirement is less (d) none					
49. Direct Induction heating takes place in	1	1				

	(a) insulating materials	(b) conducting and magnetic materials	
	(c) Conducting but non magnetic materials		
	(d) Conducting material but may be magne	tic or non magnetic	
į	50.Indirect Induction furnaces are used for	[]	
	(a) Heat treatment of casting	(b) heating of insulations	
	(c) Melting of aluminum (d)	none	
	<u> Module -II</u>		
1.	Light	[]
	(a) Is a form of heat energy (b)	Is a form of electrical energy	
	(c) Consist of electromagnetic waves (d)	consist of shooting particles	
2.	An object which appears red to the eyes absorbs	[]]
	(a) Blue radiations (b) violet radiations (c)	green radiations (d) all of the above	
3.	Sky appears blue due to	Ţ]
	(a) Radiation (b) reflection (c) refraction (d)	scathing of light over dust particles	
4.	A fluorescent tube can be operated on	I]
	(a) Both DC as well as AC (b) AC only (c)	DC only (d) satisfactorily only on DC	

5.	Luminous flux	is					[]
	(a) The rate of energy radiation in the form of light wave							
	(b) The part of							
	(c) Measuring	in lux		(d) none				
6.	Candle power	is					[]
	(a) The lumino	ous flux emitted by t	he source	per unit soli	d angle			
	(b) The light ra	adiated capacity of a	source in	a given dired	ction			
	(c) The unit of	illumination		(d) all of t	he above			
7.	The illumination	on at various points	in a horizo	ontal surface	illuminated by the	same sou	rce vari	ies as
(a)	$\cos heta$	(b) $\cos^2 heta$	(c) CO	$s^3 \theta$	(d) $\frac{1}{COS\theta}$	[]	
8.	An electric bu	lb when broken pro	ducer ban	g it is an acco	ount of			[
]								
	(a) Vacuum ins	ide the bulb	(b) pı	ressure insid	e is equal to that ou	ıt side		
	(c) Pressure at	air in the bulb	(d) no	one				
9.	Sodium vapor	lamp needs an ioni	zation volt	age of about			[]
	(a) 5 V	(b) 20 V	(c) 50) V	(d) 100 V			
10). The illumina	tion level in houses	is in the ra	inge of			[]
	(a) 20-50 lux	(b) 100-20	0 lux	(c) 300-50	00 lux (d) 700 lux			
	-	ncy of flickers in a fl		-		ll be	[]
	(A) 25 per second (B) 50 per second (C) 100 per second (D) 220 per second.							

12. Wavelength of green color is nearly (A) 4000 A (B) 4500 A (C) 5000 A (D) 5500 A.	[]
13. One Angstrom is (A) 10 ⁻⁶ meter (B)10 ⁻⁸ meter (C) 10 ⁻⁸ cm (D) 10 ⁻⁸ mm.	[]
14. Which of the following color has wave-length between green and color? (A) Yellow (B) Blue (C) Violet (D) None.	[]
15. The purpose of providing a choke in a tube light is (A) to eliminate corona effects (B) to avoid radio interference (C) to improve power factor (D) to limit current to appropriate value.	[]
16. A 60 W lamp given a luminous flux of 1500 lumen. Its efficiency is (A) 1500 lumen/watt (B) 250 lumen/watt (C) 25 lumen/watt (D) 2.5 lumen/watt	[vatt.]
17. One lux is the same as	[]
(A) one lumen/sq. cm $$ (B) one lumen/sq. m (C) one lumen/100 sq. m (D) one lumen/10	00 sq.	. m.
18. The vacuum inside an incandescent lamp is of the order of (A) 10^{-2} mm Hg(B) 10^{-3} mm Hg (C) 10^{-4} mm Hg(D) 10^{-5} mm Hg.]]
19. Which of the following application does not need ultra-violet lamps? (A) Medical purposes (B) Aircraft cockpit dashboard lighting (C) Car lighting (D) Blue print machines.	[]
20. When using ultra-violet lamps the reflector for maximum should be made of (A) aluminium (B) copper (C) leaf (D) glass.	[]
21. In the process of electroplating the circuitry involved is (a) Polarised (b) Non-Polarised (c) Depends upon nature of plating (d) None out of above	[1
 22. The existence of a counter electrode is observed some where is the (a) Plating vats (b) Electro-chemical cleaning baths (b) D.C supply sources (d) Nothing as above is connected with the plating system]
23. The capacitor bank installed in the rectifier system of any electroplating Plant is meant for(a) Smoothing the effects of loads variation(b) Minimizing the ripple content of the D.C. supply(c) To improve power factor and line regulation of the mains feeding the	[]

rectifier system			
(d) All as above			
24. The object undergoing surface plating v		[]
	s upon nature of supply source		
25. The compound gensets used for the purp	-	[]
	vely excited (c) Depends up on plating	rod	
26. The preferred vat polarity is		[]
(a) Positive	(b) Negative		
(c) Zero potential without any polarity	(d) An arbitrary choice	-	,
27. Spongy coating of electroplating speaks		L]
(a) Under current density	(b) Over current density		
(c) Excessive electrolyte density	(d) Poorer electrolyte density		
20. The mostal bains demonited in available in	in forms of	г	1
28. The metal being deposited is available i		L]
(a) Constituent of electrolyte	(b) One of the electrodes		
(c) Both as above	(d) None out of above		
29. Chrome plating done as		г	1
1 0	(c) Tertiary layer	[J
(a) primary rayer (b) Secondary rayer	(c) Ternary rayer		
30. Polarization on cathode surface can be c	checked through	Г	1
(a) Limiting current magnitude	(b) Agitation of electrolyte	L	J
(c) Periodical reverse plating	(d) All as above		
(c) Terrodical reverse placing	(d) III as above		
31. The storage battery generally used in el	ectric power station is	[1
(a) nickel-cadmium battery	b) zinc-carbon battery	L	J
(a) moner caumam sactory	s, incompanient		
(c) lead-acid battery	(d) none of the above		
32. The output voltage of a charger is		[]
(a) less than the battery voltage	(b) higher than the battery voltage	L	J
(a) less than the battery voitage	(b) higher than the battery voltage		
(c) the same as the battery voltage	(d) none of the above		
33. Cells are connected in series in order to		г	1
		[]
(a) increase the voltage rating	(6) increase the current rating		
(c) increase the life of the cells	(d) none of the above		
•			
24 Five 2 V colle are connected in negative	The output veltage is	г	1
34. Five 2 V cells are connected in parallel.	The output voltage is	l	J

(a) 1 V	(6) 1.5 V	(c) 1.75 V	(d) 2 V		
35. The ca	pacity of a batte	ry is expressed	l in terms of		[
(a) current	rating (b) volta	ge rating (c) ar	mpere-hour rating (d) none of the above		
36. During	the charging and	d discharging o	f a nickel-iron cell	[]
(a) corrosi	ve fumes are pro	oduced	(b) water is neither formed nor absor	rbed	
(c) nickel h	nydroxide remaii	ns unsplit	(d) its e.m.f. remains constant		
	npared to consta e advantage of	nnt-current syst	tem, the constant-voltage system of cha	rging a le	ead acid
(a) reducir	ng time of chargi	ng	(b) increasing cell capacity		
(c) both (a) and (b)		(d) avoiding excessive gassing		
38. A dead	l storage battery	can be revived	d by		[
(a) adding	distilled water		(6) adding so-called battery restorer		
(c) a dose	of H2SO4	(d) n	one of the above		
39. As com	npared to a lead	-acid cell, the e	efficiency of a nickel-iron cell is less due t	o its	
(a) compa	ctness		(b) lower e.m.f.	[]
(c) small q	uantity of electr	olyte used	(d) higher internal resistance		
40. Trickle	charging of a st	orage battery h	nelps to	[]
(a) mainta	in proper electro	olyte level	(b) increase its reserve capacity		
(c) prevent	t sulphation		(d) keep it fresh and fully charged		

41. mercury v	apor lamp needs an ion	ization voltage of abou	ut]]
(a) 5 V	(b) 20 V	(c) 50 V	(d) none		
42. The illum	ination level in factories	s is in the range of		[]
(a) 20-50 l	ux (b) 100-200	lux (c) 300-50	0 lux (d) none		
12. The face		oon di oont lamm at 220 N	V 50 He averely will be	r	1
(A) 25 per se (C) 100 per s		(B) 50 per second (D) none	v, 50 Hz supply will be	[]
_	gth of yellow color is ne			[]
(A) 4000 A	(B) 4500 A		(D) none	L	,
45. One Ang (A) 10 ⁻⁶ mete	estrom is er (B)10 ⁻⁸ meter (C)	10 ⁻⁸ cm (D) none		[]
46. Which of (A) Yellow	f the following color has (B) Blue (C)	wave-length between Violet (D) None.	_	[]
(A) to elimin	oose of providing a chok nate corona effects ve power factor	(B) to avoid radio	interference t to appropriate value.	[]
48. A 80 W	lamp given a luminous f nen/watt (B) 250 lum	lux of 2000 lumen. Its	efficiency is	[]
	is the same as		4400	[]
	en/sq. cm (B) one lum uum inside an fluoresce		n/100 sq. m (D) one lume	en/1000 sq. [m. 1
		(C) 10^{-4} mm Hg (D		ι	J
		<u>Module-III</u>			
1. The h	asic element of an elect	ric drives are			[
]		.			·

(a) Electri	c motors and transr	mission system			
(b) Electri	c motors, transmiss	ion and control	system		
(c) Transn	nission and control	system (d) e	ectric motors and conv	ersion equipmen	t
2. A typical ac	tive load is]]
(a) Hoist	(b) blower	(c) pump	(d) lathe		
3. An elevator	r drive is required			[]
(a)One qu	uadrant (b) tv	wo quadrants	(c) three quadrants	(d) four quad	Irants
4. Load torque	e constant at all spe	eds is represent	s by a	[]
(a) Fan (b	o) compressor	(c) centrifuga	ll pump (d) none		
5A DC series r	notor is used for an	over hauling loa	ad. It can work stably if	[]
(a) The ar	mature is shunted b	y a resistor	(b) the field winding	is reverse	
(c) A resis	tor is put in series v	vith a machine	(d) a diverter is put a	across the field	
6. Which mot	or should not be us	ed for centrifuga	I pumps?	[]
(a) Shunt	(b) series	(c) cumulativ	ely compound (d) c	lifferential comp	ound
7	Attack and a second and the			:	
7. For cumula	tively running rollin	g milis with inte	rmittent loading, the mo		rive is
				[]
(a) DC ser	ies motor		(b) DC shunt motor		
(c) DC diff	ferential compound	motor	(d) Cumulatively con	npound motor	

8. Speed control by variation of field flux re	esult in	[]
(a) Constant power drive (b) var	iable power drive		
(c) constant torque drive	(d) Variable torque drive		
9. The electric braking system commonly e	employed in rolling mill elevators and pri	nting	
Process is		[]
(a) Plugging (b) rheostatic	(c) dynamic (d) regenerative		
10. The following converters can feed pow(a) Semi converter (b) full converter	· ·	[]	j
(d) Combination of semi and full conve	rters		
11. Which of the following is preferred for auto	omatic drives?	[]
a) Synchronous motors	b) Squirrel cage induction motor		
c) Ward-Leonard Controlled dc motor	d) any of these		
12. Which type of drive can be used for hoisting i	machinery?	[]]
a) Slip ring induction motor	b) Ward Leonard controlled dc shunt m	otor	
c) DC compound motor	d) any of these		
13. The motor normally used for crane is		[]]
a) Slip- ring induction motor	b) Ward Leonard Controlled DC shunt r	notor	
c) Synchronous motor	d) DC differentially compound motor		
14. A wound rotor induction motor is preferred consideration involved is	over squirrel cage induction motor when	the major [

a) high starting torque	b) low starting current		
c) speed control over limited range	d) all of these		
15. When smooth and precise speed con	trol over a wide range is desired, the motor	preferred	d is
a) synchronous motor	b) squirrel cage induction motor	[]
c) wound rotor induction motor	d) dc motor		
16. when quick speed reversal is a conside	ration the motor preferred as	[]
a) synchronous motor	b) squirrel cage induction motor		
c) wound rotor induction motor	d) dc motor		
17. DC supply can be obtained from AC sup	oply by the use of	[]
a) motor generator set	b) mercury arc rectifier		
c) silicon diodes	d) any of these		
18. The selection of control gear for a pa	rticular application is based on the consider	ation of	
a) duty	b) starting torque	[]
c) limitations on starting current	d) all of these		
19. The consideration involved in the select depends on	tion of the type of electric drive for a partic	ular applic [cation]
a) speed control range and its nature	b) starting torque		
c) environmental conditions	d) all of these		
20. As compared to squirrel cage induction major consideration is	n motor a wound rotor induction motor is pr	eferred w	/hen thε 1

a) high starting torq	ue	b) low windage losses			
c) slow speed opera	tion	d) all of these			
21. Main traction sys	tem used in India are usi	ng locomotiv	res	[]
(a) Steam engine	(b) diesel engine	(c) electric engines	(d) all of the a	bove	
22. Sub urban railwa	ys use			[]
(a) 1500 V DC (b)	400 V, 3 phase AC (c) 3	30 V 3 phase AC (d) 60	00 V 3 phase AC		
23. Long distance rail	lways operate in			[]
(a) 600 V DC	(b) 25 KV single pha	se AC (c) 25 KV 3 ph	AC (d) 15	KV 3 p	h AC
24. The braking retar	dation for urban (or) sub	urban service is		[]
(a) 1.5-2.5 KMPHS	(b) 3-4 KMPHS	(c) 5-10 KMPHS (d) 0.	5-1.5 KMPHS		
25. The maximum sp	eed at which trains run ir	n main line railway service	e is []	
(a) 160 KMPH (b) 1	120 KMPH	(c) 100 KMPH	(d) 200 KMPH		